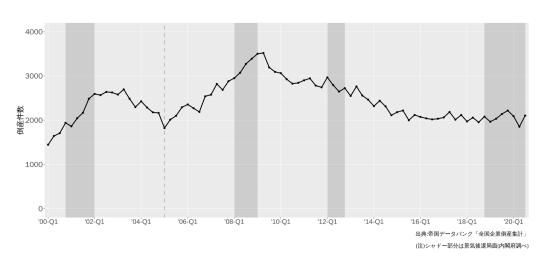
コロナ禍の倒産件数予測モデル

帝国データバンク/滋賀大学DEMLセンター

目的と方法

● 目的


2四半期先までの倒産件数の高精度の予測

- 方法
 - ▶ 倒産件数を被説明変数とする説明力の高い予測用 重回帰モデルの開発
 - ▶ 影響点を考慮したモデルのパラメータの頑健推定

倒産件数データの問題点1

● 2005年4月の倒産件数集計方式の変更と変更後の景気拡大下の

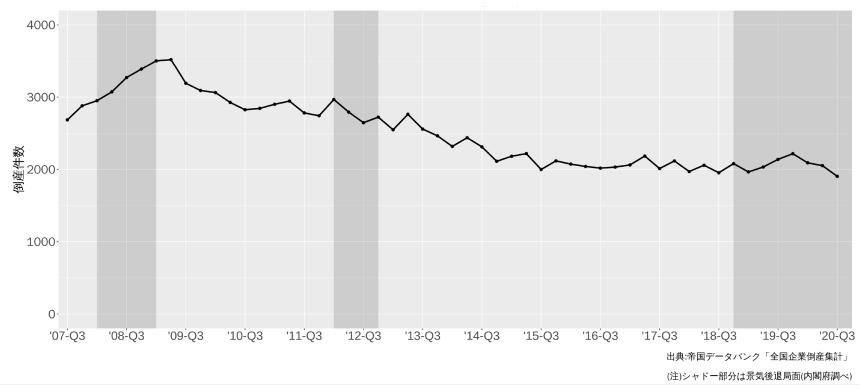
倒産件数の増大

- 対応
 - ▶ 景気拡大下の倒産件数の増大を過度期のデータ計測の機能不全 と判断
 - ▶ 推定対象期間を以下のように設定

	1四半期先予測モデル	2四半期先予測モデル
予測対象期間	2007年第4四半期~	2008年第1四半期~
説明変数対象期間	2007年第3四半期~	2007年第3四半期~

倒産件数データの問題点2

● 本年5月のデータの過少計測(裁判所の業務縮小)


月	4	5	6	7	8	9
倒産件数	758	288	806	847	655	602
	1,852				2,104	

● 対応

▶ 反実仮想データとして、5~7月のデータを当該3ヶ月間の平均値と 仮定

月	4	5	6	7	8	9
補正後	758	647	647	647	655	602
		2,052			1,904	

補正後倒産件数データの推移

● 特徴

- ▶ 世界金融危機時の高水準とコロナ禍の低水準
- ▶ 2013-Q3からの一層低下

1四半期先予測モデルの決定

- 説明変数候補,符号条件,情報量基準(AIC)で選択されたモデル
 - ▶ 全係数の符号条件が合致するモデルの中で選択

対象指標	説明変数候補	符号	選択
業況	業況DI(中小企業·製造業)当期	_	0
採算性	販売価格DI(中小企業·全産業)一仕入価格DI(中小企業·全産業)当期	_	0
固定費負担	雇用人員DI(中小企業·全産業)当期 設備判断DI(中小企業·全産業)当期	+++	
借入環境の量的側面	資金繰りDI(中小企業・全産業)前期 貸出態度DI(中小企業・全産業)前期	_	0
借入環境の金利面	貸出約定平均金利(新規·総合·国内銀行)前期 貸出約定平均金利(新規·長期·国内銀行)前期	+++	0
対外競争力環境	実質実効為替レート前期	+	0

OLS・GLS推定の結果

- OLS推定の結果
 - ▶ DW検定:誤差項の自己相関を検出
 - → GLS推定
- GLS推定(繰り返しPrais-Wistein法)の結果
 - ➤ 情報量基準(AIC)による1四半期先モデルの決定
- 影響分析の結果
 - Cook's D:影響点4点を検出
 - ➤ L-Rプロット:高位の作用点2点を検出
 - → 頑健推定

1四半期先予測モデルの頑健推定の結果1

● MM推定(3段階推定法)を適用

第1段階:残差の頑健推定(崩壊点基準50%)

第2段階:誤差項の標準偏差の頑健推定(同50%)

第3段階:パラメータ推定(漸近的有効性基準95%)

● MM推定値:全係数の符号条件合致

説明変数	定数項	業況DI	販売価格DI 一仕入価格DI	貸出態度DI	貸出金利	為替レート
符号条件	無	_	_	_	+	+
推定值	1,026.3	△3.0528	△4.1332	△10.646	704.45	7.4529
p値	0.014178	0.090640	0.20803	0.060071	0.00014736	0.039097

1四半期先予測モデルの頑健推定の結果1

● モデルの説明力

▶ 93.547%(自由度修正済決定係数)

● 回帰診断結果

▶ 誤差項の不均一分散: BP=7.1118, p値=0.2125

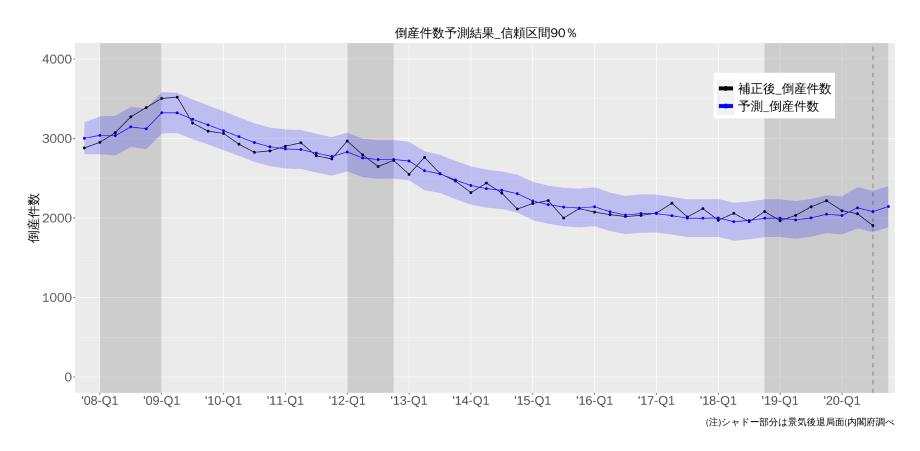
➤ 誤差項の自己相関: DW=1.9601, p値=0.2261

➤ 多重共線性:最大VIF<10

説明変数	業況DI	販売価格DI 一仕入価格DI	貸出態度DI	貸出金利	為替レート
VIF	2.161011	3.451352	3.701903	4.981662	2.488107

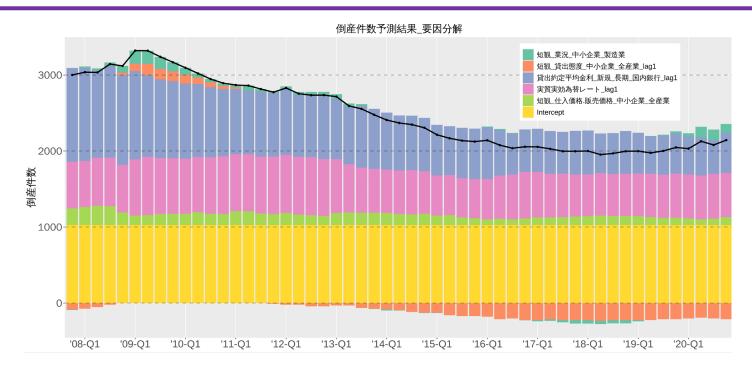
予測公表の速報性確保1

● 問題点


> 9月の倒産件数が公表される10月7日時点で,9月の 貸出約定平均金利と実質実効為替レートは未公表

- 9月の貸出約定平均金利の推定
 - 1. 貸出約定平均金利を被説明変数, 10年国債利回りと長期 プライムレートを説明変数とする重回帰モデルをGLSで推定
 - 2. 9月の10年国債利回りと長期プライムレートを上で得られた重回帰モ デルに代入し、9月の貸出約定平均金利を推定

予測公表の速報性確保2


- 9月の実質実効為替レートの推定
 - 内外インフレ率差(名目実効為替レートー実質実効為替レート)の AR(n)モデル: AR(1)選択(AIC)
 - 2. 名目実効為替レートを被説明変数,円インデックスを説明変数とする 単回帰モデルをGLSで推定し,9月の円インデックスから9月の名目実 効為替レートを推定
 - 3. AR(1)モデルに8月の内外インフレ率差と9月の名目実効為替レートを代入し、9月の実質実効為替レートを推定

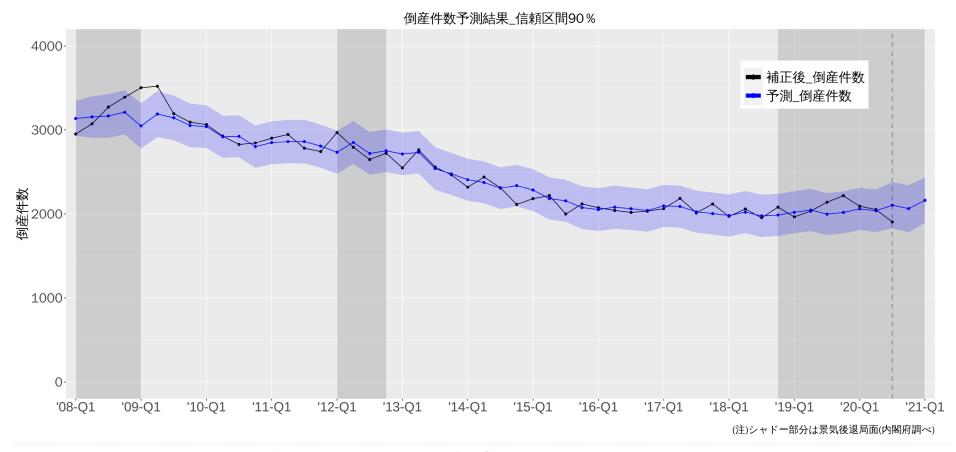
1四半期先予測モデルに基づく予測倒産件数

- ▶ 予測値は実績値を高い精度で予測
- ▶ 本年12月まで低水準で推移すると予測

1四半期先予測モデルに基づく予測倒産件数の要因分解

- ▶ 世界金融危機時に比べ低水準に留まっている主因は金利低下, 貸出態度軟化と為替レート低下も寄与
- > 2013-Q2以降の倒産件数の減少はこれら3要因が寄与
- > これら3要因の主因は、日銀の量的質的金融緩和か

2四半期先予測モデル


● GLS・MM推定値:全係数の符号合致

説明変数	定数項	業況DI	販売価格DI 一仕入価格DI	貸出金利	為替レート
符号条件	無	_	_	+	+
推定值	414.992	△3.5124	△8.5630	761.10	11.513
p値	0.050882	0.061520	0.033722	6.2079e-06	0.00013196

- ➤ モデルの説明力:87.855%(自由度修正済決定係数)
- 回帰診断結果:異常なし
 - ⇒ 誤差項の不均一分散: BP=8.9501, p値=0.06236
 - ➤ 誤差項の自己相関: DW=1.7982, p値=0.1165
 - ➤ 多重共線性:最大VIF<10

説明変数	業況DI	販売価格DI 一仕入価格DI	貸出金利	為替レート
VIF	1.817604	3.559073	4.719727	2.049026

2四半期先予測モデルに基づく予測倒産件数

- > 予測値は実績値を高い精度で予測
- ▶ 来年3月まで低水準で推移すると予測

逐次推定によるモデルの頑健性の検証

推定対象期間	'19-Q2	'19-Q3	'19-Q4	'20-Q1
~'19-Q1	2,052	2,006	_	_
~'19-Q2	_	2,070	2,034	_
~'19-Q3	_	_	2,152	2,102
~'19-Q4	_	_	_	2,177
実績	2,033	2,139	2,217	2,091
2期先予測誤差率	_	△6.2%	△8.3%	+0.5%
1期先予測誤差率	+0.9%	△3.2%	△2.9%	+4.1%

● 評価

- ▶ 1期先の予測精度は高い
- ▶ 2期先の予測精度は1期先に比べ低下するものの, 2期先としては相当程度高い

本年末までの倒産件数の予測

	'20-Q2実績	'20-Q3実績	'20-Q4予測	'21-Q1予測
信頼区間上限	_	_	2,399	2,432
実績•予測 (補正後)	1,852 (2,052)	2,104 (1,904)	2,143	2,162
信頼区間下限	<u>—</u>	_	1,887	1,893

● 予測結果

- ▶ 特殊要因(本年5月データの過少計測)を考慮した補正後の予測 倒産件数は低水準で推移
- > 90%信頼区間上限値の場合でも、尚2013年第4四半期~2014年第3四半期の水準に止まる

まとめ1

- 予測用重回帰モデル
 - ▶ 説明力の高いモデルを開発し、影響値の悪影響を軽減する頑健推定でパラメータを推定
- 倒産件数の特徴の説明
 - ▶ 世界金融危機時に比べ低水準に留まっている主因は金利低下,為 替レート低下と貸出態度軟化も寄与
 - > 2013-Q2以降の倒産件数の減少はこれら3要因が寄与
 - > これら3要因の主因は、日銀の量的質的金融緩和か

まとめ2

● 予測

- ▶ 特殊要因(本年5月データの過少計測)を考慮した補正後の 予測倒産件数は低水準で推移
- ▶ 予測値の90%信頼区間上限値でも、尚2013年第4四半期~ 2014年第3四半期の水準に止まる

留意点

- ▶ 倒産件数が今後も低水準に止まるとの本予測は、感染状況が落ち着き、景況感が回復してきた現時点でのもの
- 今後,感染状況が再び拡大し,経済活動の縮小を余儀なくされた場合は、本予測よりも上振れし得る
- ▶ コロナ禍の不況の深刻さは、倒産件数に現れなくても、雇用関連指標に現れてくることが懸念されている
- > 今後は, 雇用関連指標(完全失業率, 有効求人倍率)の予測モデルの開発を企図